
Reent Advanes of Strong-Strong Beam-Beam SimulationJi Qiang, Miguel A. Furman, and Robert D. RyneLawrene Berkeley National Laboratory, Berkeley, CA 94720, USAWolfram FisherBrookhaven National Laboratory, Upton, New York 11973, USAKazuhito OhmiHigh Energy Aelerator Researh Organization (KEK), 1-1 Oho, Tsukuba, 305-0801, JapanIn this paper, we report on reent advanes in strong-strong beam-beam sim-ulation. Numerial methods used in the alulation of the beam-beam foresare reviewed. A new omputational method to solve the Poisson equation onnonuniform grid is presented. This method redues the omputational ost by ahalf ompared with the standard FFT based method on uniform grid. It is alsomore aurate than the standard method for a olliding beam with low trans-verse aspet ratio. In appliations, we present the study of oherent modes withmulti-bunh, multi-ollision beam-beam interations at RHIC. We also presentthe strong-strong simulation of the luminosity evolution at KEKB with and with-out �nite rossing angle. I. INTRODUCTIONThe beam-beam interation puts a strong limit on the luminosity of the high energy storagering olliders. At the interation points, the eletromagneti �elds generated by one beam fousor defous the opposite beam. This an ause beam blowup and a redution of luminosity. Anaurate simulation of the beam-beam interation is needed to help optimize the luminosity in highenergy olliders. In this ase, the self-onsistent strong-strong beam-beam simulation provides aninvaluable tool for the study of the olliding beams.In the strong-strong beam-beam simulation, a number of simulation partiles (maropartiles)are used with the same harge-to-mass ratio as the real partiles. Outside the interation region,the maropartiles are transported through the simulated lattie using transfer maps assoiatedwith external elements, radiation damping, and quantum exitation. At the interation point, theeletromagneti �elds from the beams are alulated and applied to the partiles of the opposingbeam.The soft Gaussian approximation is sometimes used to obtain the eletromagneti �elds of thebeams at the ollision point [1{3℄. While this approximation has the advantage of omputationalspeed, it is not self-onsistent beause it assumes a Gaussian distribution for the maropartileseven when the atual distribution might di�er substantially from the Gaussian shape. To take intoaount the e�ets of the beam distribution self-onsistently, one has to solve the Poisson equa-tion numerially during eah ollision for the atual maropartile distribution at that instant. Anumber of methods have been used to solve the Poisson equation. The �ve-point �nite di�erenemethod with Fourier analysis and yli redution (FACR) has been used by Krishnagopal [4℄ andCai et al. [5℄. This method solves the Possion equation eÆiently with �nite domain boundaryonditions. For the open boundary onditions, whih are appropriate in typial beam-beam sim-ulations, the method requires �nding an e�etive boundary ondition on the problem boundary;this an be omputationally expensive. In addition, this method is not eÆient to handle the asewith two widely separated beams, where the domain of the soure partiles (partile domain) andthe domain of the eletri �eld (�eld domain) are di�erent. Another method based on the fast



2multipole expansion has been used by Herr et al. [6℄ to solve the Poisson equation. In this method,the omputational ost sales linearly with the number of partiles or with the number of totalmesh points for the open boundary ondition. The eÆieny of this method is independent of thedistribution of the soure partiles and the �eld domain, whih makes it suitable to handle thesituation with two separated beams. However, this method is an approximate algorithm in thesense that the auray of the expansion depends on the radius of onvergene. The omputationalspeed depends on the number of polynomials required in the multipole expansion.The widely used method to solve the Poisson equation in beam-beam simulations is the Greenfuntion method with fast Fourier transform (FFT) on uniform grid. This method uses an FFT toalulate the yli summation on a doubled omputational grid [7{10℄. The omputational ostsales as N2 log(N), where N is the number of grid points in one diretion. By de�ning a newshifted integrated Green funtion, this method an handle the separated beams, and beams withlarge aspet ratio.During the beam-beam interation, when the bunh length is large ompared with the betafuntion value or the beam-beam fores are strong, �nite bunh length e�ets are not negligible.In this ase, a multiple slie model has to be used. The omputational ost sales as the square ofthe number of slies. For a hadron ollider with small radiation damping, it is required to trakthe beams for many millions of turns to study the dynamis on the time sale of the lifetime of thebeams. To study the beam-beam interation fully self-onsistently for both beams (i.e. a strong-strong formulation), and to inlude all the physial proesses of long range o�-entroid interations,�nite beam bunh length e�ets, and rossing angle ollisions, requires omputational resoures farbeyond the apability of urrent serial omputers. A parallel beam-beam simulation ode, Beam-Beam3D, with both weak-strong and strong-strong apabilities, that an simulate these physialproesses aurately using high performane omputers has been developed at Lawrene BerkeleyNational Laboratory [12℄. In this paper, we present reent advanes in the numerial method toalulate the beam-beam fores and in appliations to the studies of beam-beam interations atRHIC and KEKB.The organization of the paper is as follows: The omputational methods are desribed in Setion2. Appliations to the studies of beam-beam interations at RHIC and KEKB are given in Setion3. We summarize our results in Setion 4.II. COMPUTATIONAL METHODSIn strong-strong beam-beam simulation, the eletri �elds generated by the opposite movingbeam an be obtained from the solution of Poisson's equation. In Cartesian oordinate system,the solution of Poisson's equation an be written as�(x; y) = Z G(x; �x; y; �y)�(�x; �y) d�xd�y (1)where G is the Green's funtion, � is the harge density, and (x; y) represent the oordinates inthe plane perpendiular to the diretion of motion of the beam. For the ase of transverse openboundary onditions, the Green's funtion is given by:G(x; �x; y; �y) = �12 ln((x� �x)2 + (y � �y)2) (2)Now onsider a simulation of an open system where the omputational domain ontaining thepartiles has a range of (0; Lx) and (0; Ly), and where eah dimension has been disretized using



3Nx and Ny points, the eletri potentials on the grid an be approximated as�(xi; yj) = hxhy NxXi0=1 NyXj0=1G(xi � xi0 ; yi � yj0)�(xi0 ; yj0) (3)where xi = (i� 1)hx and yj = (j � 1)hy . This onvolution an be replaed by a yli onvolutionexpression in a double-gridded omputational domain. The yli onvolution an be omputedeÆiently using an FFT as desribed by Hokney and Eastwood [13℄.The method desribed above involves use of the FFT on a uniform omputational grid. Inhigh energy olliders, the olliding beams normally have a non-uniform transverse harge densitydistribution. A nonuniform grid will help resolve the harge density distribution more eÆiently.To use a nonuniform grid, we have transformed the harge density distribution from the Cartesianoordinates (x; y) into a ylindrial oordinates (r; �). Then, we de�ne another transform betweenradial r and a new variable s as: s = 1k1 log( rk2 ) (4)where the onstants k1 and k2 ontrol the sale and the rate of the funtion variation between rand s. Using a uniform grid along s will generate a nonuniform grid along r sine dr = k1k2rds.For a uniform omputational grid in (s; �) oordinates, we an use the FFT based method toalulate the onvolution for eletri potential. A similar transform has been used in alulationof the gravitational potential in a disk galaxy system [14℄. The new Green funtion in the (s; �)oordinate is: G(s; �) = �12 log(e2k1s � 2ek1s os(�) + 1) (5)In the (s; �) oordinates, both the Green's funtion and the harge density distribution are periodifuntions of �. Hene, we do not need to double the omputational domain along � to use theHokey's algorithm. This redues the omputational ost and the storage by a fator of twoompared with the standard FFT based Green method on uniform Cartesian oordinate.As an example of the above algorithm, we have omputed the radial eletri �eld distributiongenerated by a round beam with a Gaussian density distribution. The left plot of Fig. 1 showsthe analytial solution of the radial eletri �eld Er as a funtion of radial distane r. The rightplot of Fig. 1 shows the absolute error of Er as a funtion of r using the nonuniform grid Greenfuntion method and the standard uniform grid Green funtion method. It an be seen thatusing the nonuniform grid Green funtion method, the numerial error of Er is about half of thatusing the uniform grid Green funtion method. In this example, the transverse aspet ratio of theolliding beam is one. This is true for most hadron ollider where radiation damping is negligible.For eletron-positron olliders suh as KEKB and PEPII, the olliding beam an have a very largetransverse aspet ratio. To test the appliability of the above algorithm, we have also alulated theeletri �eld for a Gaussian harge density distribution with an aspet ratio of 30. The relative errorof Ex on the x axis is given in Fig. 2 together with that alulated from using the integrated Greenfuntion method on uniform grid. Here, three relative errors of Ex from using the nonuniform gridGreen funtion method on a omputational grid of 256� 512, 512� 256 and 1024� 512 are given.The relative error from the integrated uniform Green funtion method uses a omputational gridof 256�256. Sine the nonuniform grid Green funtion does not need to double the omputationaldomain in the � diretion, it has the same omputational ost on a 256 � 512 grid as the uniformgrid Green funtion method does on a 256�256 grid. It is seen that the integrated Green funtionmethod on a 256� 256 uniform grid gives the least error. This suggests that the integrated Greenfuntion method might be more eÆient for a beam with large aspet ratio.
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FIG. 1: Radial eletri �eld Er and the absolute error of Er as a funtion of r from the nonunifrom gridGreen funtion method and from the uniform grid Green funtion method.
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FIG. 2: Relative error of Ex as a funtion of x from using the nonuniform grid Green funtion method andfrom using the integrated uniform grid Green funtion method.III. APPLICATIONSIn reent appliations, we have studied the oherent modes of multi-bunh ollisions at RHICthrough a strong-strong beam-beam simulation [15℄. Fig. 3 gives a shemati plot of two ollidingbeams at RHIC. Here eah beam has three bunhes. The six bunhes ouple with eah otherthrough ollisions at four interation points, IP2, IP6, IP8 and IP10. Table 1 gives a list of thephysial parameters used in the simulation. All bunhes are assumed to have the same physialparameters listed in the table. Fig. 4 shows power spetra of horizontal entroid motion of threebunhes. There are only two distint eigenmodes, the � mode (180 degree out of phase) and the� mode (in phase), whih are observable in this example. The other four modes are degeneratedand buried into the inoherent ontinuous spetra. The � mode tune shift is 4:918� whih is aboutof a fator of 4 times the single bunh � tune shift 1:21�. This is in agreement with the analytialalulation of Yokoya et. al. [16℄. The large tune shift of the � mode due to the multi-bunhollisions presents a potential instability sine it an not be damped out by the ontinuous spetrathrough the Landau damping. In above example, we have assumed that the two beams havethe same parameters. In reality, the parameters of two rings an be ontrolled so that the twoolliding beams have di�erent tunes. Fig. 5 gives power spetra of horizontal entroid motion ofthree bunhes with the horizontal tune of the seond beam set as 0:2 while the �rst beam is set as
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FIG. 3: A shemati plot of two olliding beams at RHIC.beam energy (GeV) 100protons per bunh 10.0 � 1010�� (m) 1.0RMS spot size at the IP (mm) 0.176betatron tunes (�x, �y) (0.22, 0.23)synhrotron tune �z 3.7e-4RMS bunh length (m) 3.6momentum spread 1.6e-3beam-beam parameter � 0.00366TABLE I: RHIC physial parameters for beam-beam simulations0:22. The two olliding beams lose the oherent motion and the dipole mode disappears into theontinuous spetra.In another appliation, we have studied the time evolution of luminosity at KEKB. The physialparameter used in the simulation is given in Table 2. Fig. 6 shows the time evolution of singlebunh ollision luminosity with (left plot) and without (right plot) a �nite rossing angle. With11 mrad of �nite rossing angle, the luminosity has dropped by about a fator of two after about1000 turns. This suggests that using a head-on ollision (e.g. by using rab avity at interationpoint) will signi�antly improve the luminosity at KEKB.IV. SUMMARYIn this paper, we have reported on some reent advanes of strong-strong beam-beam simulation.The new nonuniform grid Green funtion method for alulating the beam-beam fores has theadvantage of better auray and less omputational ost for low aspet ratio beam in hadronollider. The appliation to the study of the multi-bunh oherent modes at RHIC shows a muhlarger dipole mode tune shift than that of the single bunh ollision. This mode an be removedwith asymmetri tunes of two olliding beams. In the KEKB appliation, the ollision with 11mrad rossing angle shows a signi�ant derease of the luminosity ompared with the head-onollision. This suggests that using a rab avity to orret the rossing angle ollision will improvethe luminosity of the future mahine operation.
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FIG. 4: Power spetra (arbitrary normalization) of the horizontal entroid motion of three bunhes at RHIC.
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7e�/e+ beam energy (GeV) 8.0/3.5e�/e+ per bunh 4.375 � 1010/10.0 � 1010�� (horizontal, vertial, longitudinal) (m) (0.6, 0.007, 10.0)Emittane (horizontal, vertial, longitudinal) (m-rad) (1.8 � 10�18, 1.8 � 10�18, 4.8 � 10�6)betatron tunes (�x, �y) (0.5151, 0.5801)synhrotron tune �z 0.016damping time (horizontal, vertial, longitudinal) (/turn) (2.5� 10�4, 2.5� 10�4, 5.0� 10�4)TABLE II: KEKB physial parameters for the beam-beam simulation
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